Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Stomatology ; (12): 378-382, 2015.
Article in Chinese | WPRIM | ID: wpr-294699

ABSTRACT

<p><b>OBJECTIVE</b>To develop novel polyetheretherketone (PEEK) based nanocomposites which possess the favorable antibacterial property, and to investigate the oral microbial adhesion and biofilm formation on the surfaces of PEEK, nano-fluorohydroxyapatite (n-FHA)-PEEK and nano-hydroxyaptite (n-HA)-PEEK.</p><p><b>METHODS</b>The bacterial adhesion and biofilm formation on the surfaces of n-FHA-PEEK, n-HA-PEEK were investigated via microbial viability assay kit and laser scanning confocal microscope (LSCM), respectively, with pure PEEK as control group.</p><p><b>RESULTS</b>No significantly statistical difference were found in the bacterial adhesion amounts on the surfaces of n-FHA-PEEK, n-HA-PEEK and PEEK at 1 h and 4 h. However, the number of bacteria on the n-FHA-PEEK surface decreased dramatically at 2 h (0.496 ± 0.008) compared with n-HA-PEEK groups (0.543 ± 0.015, P < 0.01). Although the biofilms formation on surfaces observed by LSCM had similar morphology and thickness at 3, 7, 14 d, that on the n-FHA-PEEK surface showed the highest dead-to-live bacteria ratio among the three materials at 14 d.</p><p><b>CONCLUSIONS</b>The combination of n-HA, especially for the n-FHA could inhibit the bacteria adhesion and accelerate the bacterial death, eventually may have an influence on the structure of biofilms and reduce the risk of peri-implantitis. Therefore, n-FHA-PEEK nanocomposites presented a good prospect for clinical applications as dental implant materials.</p>


Subject(s)
Bacterial Adhesion , Physiology , Bacterial Load , Biofilms , Dental Implants , Microbiology , Hydroxyapatites , Ketones , Nanocomposites , Microbiology , Polyethylene Glycols
SELECTION OF CITATIONS
SEARCH DETAIL